
Parallel Sphere Rendering

Michael Krogh, James Painter, Charles Hansen

Advanced Computing Laboratory

Los Alamos National Laboratory

Los Alamos, New Mexico 87545

fkrogh,jamie,hanseng@acl.lanl.gov

Abstract. Sphere rendering is an important method for visualizing molecular dy-
namics data. This paper presents a parallel algorithm that is almost 90 times faster
than current graphics workstations. To render extremely large data sets and large
images, the algorithm uses the MIMD features of the supercomputers to divide up
the data, render independent partial images, and then �nally composite the multiple
partial images using an optimal method. The algorithm and performance results are
presented for the CM-5 and the T3D.

1 Introduction

In recent years, massively parallel processors (MPPs) have proven to be a valuable tool

for performing scienti�c computation. Available memory on these types of computers

is greater than that found on most traditional vector supercomputers. For example,

a fully populated 256 node T3D has 16 gigabytes of physical memory. A 1024 node

CM-5 contains 32 gigabytes of physical memory. As a result, scientists who utilize these

MPPs can execute their three dimensional simulation models with much greater detail

than previously possible. While current simulations don't typically utilize the entire

memory systems of these machines, it is not uncommon for a data set from a single

time-step in a dynamic simulation to be in excess of several gigabytes. For example,

molecular dynamics simulations of structural materials have reached 600 million atoms

[1, 13]. While researchers don't usually perform simulations with 100 million atoms,

10 million to 40 million atom simulations are becoming routine. Figure 1 and Figure 2

show images of such data.

Figure 1 shows a molecular dynamics simulation composed of 104 million atoms (the

atoms are generic and not of a particular element). The atoms are arranged in a thin

plate, approximately 1500 x 1500 x 48, with outward forces applied to both the left

and right edges. A tiny notch at the lower edge of the plate bifurcates with time to

produce a brittle fracture. Colors indicate kinetic energy: grey to blue are low energies

and yellow to red are high energies. Figure 2 is a close up of the bifurcation.

With such large data sets, visualization is an essential tool for analyzing the simu-

lation output. Researchers wish to gain insight into both macroscopic phenomena as

well as microscopic phenomena. Traditional methods, such as statistical analysis and



Figure 1: 104M Atoms

Figure 2: 104M Atoms (close up)



browsing through the raw simulation data, aren't adequate by themselves for analyzing

data sets ranging in size from gigabytes to terabytes. Visualization, because of its high

bandwidth, enables a researcher to explore his or her data sets in a more timely and

fruitful manner [15].

In structural molecular dynamics, researchers wish to see both the large scale struc-

tures in the data as well as microscopic phenomena, such as the onset of dislocations.

This requires portrayal of the entire data set in a single image, where individual atoms

may not be distinguishable, and the ability to zoom in on minute details, where only a

fraction of the data can be seen. Of course, researchers also wish to see these features

as they vary with time.

For a molecular dynamics simulation, the atoms are usually represented by spheres.

One could argue that with several tens of millions of atoms, most would be subpixel

in size and that a pixel representation would be adequate. This argument is certainly

true when the viewpoint is su�ciently far away from all of the data. In this situation

the atoms shrink to pixel or subpixel sizes. However, we tend to move the viewpoint

in and around the data set thus causing the atoms to cover tens of pixels in diameter.

This technique is very useful for showing minute details within the data sets as can be

seen in Figure 2.

Empirically, we have found that a sphere tends to be the best representational form

for an atom in our simulations. Spheres can vary cleanly from subpixel sizes to covering

the entire image in extreme cases; they seem to introduce the fewest artifacts. Also, it

is a long standing and familiar representational form for atomic data.

The problem with spheres is that they can be expensive to render. Most graphics

workstations tend to approximate spheres with a collection of polygons which causes

a data explosion. Every sphere is tessellated into many tens of polygons. Instead of

rendering 40 million spheres for a single time step, one may need to render upwards

of 400 million polygons. Clearly a di�erent approach to rendering spheres is needed or

vast improvements in hardware rendering.

Another question that can be asked is where to do the rendering. Given the avail-

ability of a MPP and a graphics workstation, one could render on either the MPP, the

graphics workstation, or distributed across both. The graphics workstation is probably

not the right choice for two reasons. First, 40 million atoms requires approximately

800 megabytes of storage and most workstations don't have su�cient memory to store

many time steps of this size. Second, from our own experiments, we know it takes

approximately 34 minutes to render 40 million atoms on a Silicon Graphics Inc. Onyx

workstation equipped with RealityEngine2 graphics hardware. Additionally, it requires

on the order of 30 minutes to move the data set from the supercomputer to the work-

station. Two thousand time steps would take over 83 days to render! The distributed

approach doesn't provide a solution either. The primary bottleneck is still the graphics

hardware, and furthermore, moving hundreds of megabytes per time step can take a

substantial amount of time even over high speed networks. Rendering on the MPP is

an attractive solution given that the data resides on the MPP's disk farm and that the

MPP has su�cient memory. The challenge becomes developing an algorithm that can

exploit the multitudes of processors while minimizing overhead, typically communica-

tion costs.



2 Related Work

2.1 Sphere Rendering

Spheres can be rendered using several approaches. One approach, which is used by

Silicon Graphics Inc., is to tessellate a sphere into a set of polygons which can then be

rendered as any other polygons using the custom hardware [20]. Several tessellation

methods exist, such as a bilinear, octahedral, icosahedral, cubic, and others. The

problem with this approach is that each sphere is transformed into many polygons. The

number of polygons varies depending upon the degree of smoothness desired. Spheres

with lesser degrees of tessellation appear less spherical than those with higher degrees

of tessellation. Others have used similar approaches. Staudhammer describes a method

where spheres are tessellated but the shading is based on the sphere not the polygons,

thus the rendered sphere has a more spherical appearance while perhaps using fewer

polygons[21].

Silicon Graphics Inc. also provides alternative \bit-mapped sphere" rendering method

that uses the texture memory of the reality engine to \splat" images of a phong-shaded

sphere, with several restrictions [20]. Perspective projection is not allowed with bit-

mapped spheres and clipping occurs on an entire sphere basis, meaning spheres pop in

and out as they cross over the clip planes.

Porter's approach treats a sphere as a primitive in his scan line based rendering algo-

rithm [19]. For any spheres that intersect the current scan line, the intersection of the

sphere silhouette and the image plane is determined and then a Bresenham algorithm

is used to calculate z values for hidden surface removal. Shading is approximated with

a cosine function. Additional features of his algorithm include sorting for transparency

and pixel averaging at sphere intersections and border intersections. This is done for

anti-aliasing.

Patterson proposes an algorithm that approximates a sphere with a parabola, thus

replacing a square root operation with a division. His algorithm uses a modi�ed Bre-

senham's circle algorithm for iterating through the set of points in the framebu�er that

make up the sphere [18].

Blinn developed an elegant incremental algorithm suitable for scan conversion of a

single sphere, for example a planet model [2, 3, 4]. The technique requires a screen

coordinate system where the near and far z planes are tangent to the sphere being

renderer. As Blinn states, multiple spheres cannot be rendered using his technique in

the same z depth coordinate system. This makes his technique unsuitable for z bu�er

based visible surface determination. He instead uses a painter's algorithm for the visible

surface problem. Halperin and Overmars also use a depth sort and painter's algorithm

to renderer spheres for molecular models. The O(N logN) time bound required for a

depth sort, where N is the number of spheres, is unsuitable for rendering millions of

spheres.

2.2 Parallel Rendering Classi�cation

Many researchers have studied parallel algorithms for polygon and volume rendering

in recent years [9, 10]. Molnar et al., provide a useful taxonomy for parallel rendering

which classi�es parallel rendering methods as sort-�rst, sort-middle, or sort-last [16].

This proves useful when deciding on how to structure a rendering algorithm. Basically,



the rendering process requires a mapping from 3D object space to 2D image space which

typically requires sorting the data. This sorting can occur at three di�erent locations:

at the beginning of the rendering process, during the middle, or at the end. Each

method has its advantages and disadvantages.

Sort-�rst assigns each renderer to speci�c screen region. The renderers are responsible

for the complete rendering process, both geometry processing and rasterization, for all

primitives that map into their region of responsibility. The mapping of primitives from

object space to image space is decided initially by a relatively simple pre-transformation

operation. This approach is advantageous if a primitive has a high degree of tessellation,

because less data is communicated, or when there is high frame-to-frame coherence,

because fewer primitives need to be communicated on successive frames.

With sort-middle, primitives are evenly divided among the processors where tessel-

lation and geometry processing are performed. Then the transformed primitives are

sent to the rasterizer processors. These processors, assigned to disjoint regions of the

image plane, are responsible for rasterizing primitives that lie within their region of the

image. The advantage of this approach is that geometry processing tends to be fairly

well load balanced, however disadvantages include potentially poor load balancing for

the rasterizers and high communication costs if tessellation is high.

With the sort-last method, also know as image compositing, each processor is re-

sponsible for the complete rendering process, as with the sort-�rst approach. Instead

of mapping primitives up front to their correct image space processor, primitives are

equally distributed among the processors at the beginning, rendered into a complete

image, and then the images are composited. Two advantages of this method are: po-

tentially easier load balancing, and image compositing times depend only on image size

and not model complexity. The disadvantage is that each processor must have enough

memory for the image bu�er and that communication involves transferring the image

bu�er during compositing. This can be rather signi�cant for very large images.

2.3 Parallel Sphere Rendering

Thinking Machines o�ered parallel sphere rendering with their *Render library on

the CM-200 [23]. This used the data parallel model to render spheres. The algorithm

worked well for small spheres of equal radii achieving rendering rates of 20k spheres per

second on the CM-2. However, the algorithm exhibited extremely poor performance

when the spheres were of unequal size due to well known load balance problems in the

data parallel regime.

Fuchs et al. describe a parallel sphere rendering algorithm, credited to Fred Brooks,

for the per-pixel SIMD linear expression evaluators of Pixel Planes 3 [6]. A single sphere

is rendered in a constant time, independent of its screen space coverage, achieving

rendering rates of approximately 35,000 spheres per second. This algorithm was also

implemented on Pixel Planes 5, achieving more than one million spheres per second

[7, 12].

3 Massively Parallel Processors at the ACL

The Thinking Machines Corporation CM-5 is a production quality massively parallel

supercomputer [22]. The CM-5 can consist of 32 to 16384 Sparc processors. The



CM-5 at the Advanced Computing Lab (ACL) at Los Alamos National Laboratory

consists of 1024 processors, each with 32MB of local RAM for a total of 32GB. Each

Sparc processor also has four 64-bit wide vector units which can assist in oating math

operations. With four vector units up to 128 MFlops per node can be performed.

This yields a theoretical speed of 128 GFlops for the ACL CM-5. In practice roughly

60 GFlops has been sustained. It should also be noted that not all vendor supplied

languages use the vector units and may, in fact, rely on the Sparc processors to do all

oating point math. In this case a user can expect to see only 5 MFlops per processor.

The T3D from Cray Research Inc. is a MPP consisting of 32 to 2048 DEC Alpha

processors [5]. The ACL T3D has 256 processors, each with 64MB of RAM for a total

of 16GB. Each Alpha chip is rated at 150 MFlops, thus the machine is theoretically

capable of 38.4 GFlops total performance. However, we have seen speeds in the 2 MFlop

to 20 MFlop per processor range on average. Like the CM-5 the nodes are arranged into

partitions which must contain a power of 2 processors. The nodes are hosted by one

of three CPUs of the YMP front-end. Unlike the CM-5, the partitions are dynamically

determined and are not tied to a speci�c front-end host processor.

The T3D nodes (2 Alpha processors comprise a node) are organized into a torus

network via 300 MB/s links. The torus is then connected to the YMP through two 200

MB/s high speed links. All I/O (including HIPPI, FDDI, and disk) from the Alpha

processors is done through the YMP.

3.1 Programming Models

Both the CM-5 and the T3D support SIMD and MIMD programming models. The

SIMD (Single Instruction, Multiple Data) model performs the same operation on all

selected data elements. For example, given an array of numbers, a constant could be

added to each number. When using the SIMD model, this operation would logically

occur simultaneously on each element of the array. Actual hardware may or may not

perform this operation simultaneously on all selected data elements. This would depend

on whether or not enough physical processors exist for each element in the array.

The MIMD (Multiple Instruction/Multiple Data) model, divides a task up into a

number of subtasks that can run concurrently and independently. Some subtasks can

occur in parallel while others might occur serially. For example a set of processors

might be used to render frames for an animation. Each processor would have a data

set to render along with the viewing and/or motion transformations for its given frame

within the animation. Each renderer can execute in parallel and independently from

the other processors to produce a �nished image. In this example, no synchronization

is needed between individual processors.

MIMD programs can be either host/node programs or hostless programs. A host/node

program consists of a host program, frequently referred to as a master program, and

some number of node programs, also known as slaves. When a host/node program

commences execution, the host contains the thread of execution and is responsible

for invoking the node programs. The host typically communicates some initialization

parameters to the nodes and then instructs them to perform some task. The node

programs do not need to stay in synchronization after this point, although programs

typically involve some synchronization points, usually where communication between

nodes or between nodes and the host occurs. On the CM-5 communication is per-



formed via the CMMD library whereas the T3D uses the PVM message passing library

[8]. Hostless programs di�er from host/node programs in that they do not have a user

supplied host program as the name implies, although CMMD supplies a standard host

program to provide initialization and I/O serving. On the T3D hostless programs can

use either PVM, Cray's explicit shared memory library, or some other library such as

FM [11] or ACLMPL [17].

4 Parallel Sphere Algorithm

Our sphere rendering algorithm is based on a sort-last approach. This approach has

two essential advantages for our problem: better load balancing and reduced commu-

nications. Better load balancing is achieved because the spheres are evenly distributed

across all processors for both geometry processing and rasterizing.

Reduced communication cost can easily be seen. Instead of having to transfer 40

million atoms, each of which consists of 20 bytes of data, between geometry processors

and rasterizers, we only need to transfer images or partial images. The cost of transfer-

ring spheres can even be greater if the spheres were tessellated. Communication time

costs for image compositing grow by O(N), where N is the number of pixels in the �nal

image, and depend neither on the number of spheres rendered nor on the number of

processors used. This is discussed later in the paper.

The sphere renderer was originally designed as a MIMD program using a host/node

model, written in C with CMMD, for the CM-5. The choice of MIMD over SIMD was

made because of the desire to allow processors to compute asynchronously as much

as possible. Even though each processor has the same number of spheres to render

(plus or minus one), each sphere can be a di�erent diameter in pixels. Additionally,

spheres can be clipped if they fall outside of the image. This dictates varying amounts

of computation. The host/node model was chosen over the hostless model because of

the desire to display the resultant images through an X11 window. At this time the

hostless model on the CM-5 does not support X11. Otherwise, the program can be

easily structured using either model.

Molecular dynamics simulations are frequently time dependent and typically, the

researcher wishes to see an animation of the time series. Thus, we included support for

batch processing of sequences of data sets within the renderer.

Two additional features we required were the capability to render any number of

atoms and images of any size while working within the memory constraints of any

given partition size. The amount of memory available to the renderer is at most 32MB

per node on the CM-5 (which might be shared with other running jobs) and 64MB per

processor on the T3D (which is not shared); virtual memory does not exist. Because of

this, the renderer must determine how much of the data set it can �t into memory as

well as how much of the image will �t. If su�cient memory is not available, then either

the data set, image, or both may be processed in subsets or tiles. Figure 3 shows the

algorithmic steps for the main part of the renderer.

The only function of the host is to interact with the user and to initialize the nodes.

The host will also be responsible for image display, via X11 or HIPPI frame bu�ers.

The main body of the renderer is a loop that iterates over the sequence of data sets.

A data set, or some portion of it, is read in from disk: either an NFS (Network File

System) mounted disk or from parallel disk (SDA on the CM-5 or RAID-3 on the T3D).



read data

colorize

transform

clip and load balance

render

composite

write image

Figure 3: Steps in the Algorithm

The read operation on the CM-5, which looks like a normal UNIX read, has the option

of automatically dividing up the data set among the processors in the current partition.

For example, the �rst processor can read the �rst nth of the data, the second processor

can read the second nth of the data, and so on.

Next each processor colorizes its atoms based on a scalar quantity associated with

each atom. Atoms are then transformed from object space to screen space. Part of the

transformation operation includes transforming the atom radius into an image space

radius with a perspective transformation (i.e. spheres closer to the viewpoint will

appear to be larger than those further away). This is accomplished with a perspective

scaling factor and linear interpolation along the z depth. While this is not entirely

accurate 1, the results are indistinguishable from the exact result obtained with a \real"

perspective transformation for our data sets and typical viewing parameters.

4.1 Load Balancing

After transformation certain spheres may fall outside of the viewing frustum, these

spheres can be clipped. This has led to signi�cant load balance problems. To compen-

sate for this, we employ a simple heuristic. A list consisting of the number of visible

atoms per processor is sorted. From this list the processors are paired up. The processor

with the most atoms is paired with the processor with the least atoms; the processor

with the second most atoms is paired with the second least, and so on. For a given pair

of processors, the processor with the most atoms sends a portion of its atoms to the

other so that both end up with the same number atoms plus or minus one.

We currently use a sequential sort on a single processor in O(P logP ) time, where P

is the number of processors. This has proven to be adequate for the machine sizes we

have available (� 512 PEs). A parallel merge sort algorithm could be used to reduce

the sorting time to O(P ).

Empirically, we've found that performing this simple load balancing step twice can

yield good results while incurring only a small amount overhead (the third and fourth

times cost more than they save). The choice of this simple method over more complex,

but potentially more optimal, methods is due to the desire to avoid more complicated

communication between nodes which can be very slow.

1A sphere viewed in perspective will yield an elliptical projection in screen space in the general

case. We approximate this ellipse with a circular projection.



4.2 Scan Conversion

After all spheres have been transformed, each is scan converted, one at a time, into the

image and z bu�ers. The image bu�er consists of 4 bytes per pixel: red, green, blue,

and alpha (which is not used at this time). The z bu�er is a single oating point value

per pixel. The scan conversion is done by evaluating a distance equation for each pixel

within the bounding box for the sphere's silhouette. If the current pixel is within the

sphere, then a z bu�er comparison is made to determine visibility. If this checks, then

the color is determined. Instead of computing the true perimeter of the sphere, which

involves a square root operation, we simply leave o� the square root operation for both

the distance check and the z bu�er comparison. This yields signi�cant savings.

We have additional savings in determining pixel colors. Instead of using photo-

realistic lighting calculations (e.g. Phong), we use a simple formula which approximates

di�use and ambient shading with a single light source with very good results. We

compute the distance from the projected center of the sphere's silhouette to the pixel.

This value is used to linear interpolated an intensity that varies from \white" at the

center to \almost black" at the perimeter. This value is multiplied by the atom's color

to achieve a \shaded" RGB color. This is similar to precomputing the intensity term

in di�use shading. To simulate a light source located above and to the right of the

viewpoint, we add in an o�set in the distance calculation.

4.3 Compositing

After all P processors have rendered their spheres, they synchronize and the P im-

ages are composited. Since transparency is not supported, we do not have to worry

about compositing order. The CM-5 has a CMMD function, CMMD reduce v,

that implements a global reduction on an array using a speci�ed operator. We use

CMMD reduce v twice, once to composite the z bu�er and then a second time to

composite the image bu�er. When compositing the z bu�er, we specify a minimum

operator and our z bu�er as the array to reduce. After this call, each processor has a

new z bu�er array that contains the minimal z value across all processors for each pixel

location. This will select the values for each pixel which are closest to the viewpoint.

Next the processors loop over the composite z bu�er and compare its value at each pixel

location with that of its original z bu�er. If the values match, then it knows that its

pixel is closest to the viewpoint, otherwise it is obscured by some other pixel on another

processor. In this case, the processor would set its pixel at that location to black, a

minimal value. Following this, the processors would call CMMD reduce v again but

this time specifying the image bu�er along with the maximum operator. Only pixels

still having a color will contribute to the resultant image. After this step each processor

contains an identical image for the current image chunk. On the CM-5 this operation

takes O(N logP ).

If the renderer was not able to read in the entire data set, it then reads in the next

portion of the data set and renders those atoms for the same partial image. But instead

of starting with an empty image and z bu�er, it uses the ones which were previously

calculated. After the entire data set has been processed, the �rst processor writes

out the �nal image, or current partial image, to the image �le. If the image is being

computed in tiles, then the next tile is rendered. This continues until a full image is



rendered.

5 T3D Issues

ACL acquired its T3D after we completed the CM-5 version of the renderer. We felt

that an implementation for the T3D would be trivial since Cray had implemented PVM

on the MPP. Due to performance problems and various restrictions and bugs, Cray's

PVM implementation proved to be unusable for our application.

The routines for doing I/O had to be rewritten for the T3D. If all processors try

to read their own portion of the data �le, the YMP host becomes overloaded since it

performs the actual I/O and would spawn a task for each Alpha processor. To avoid

this, we had the host read the data �le and parcel out the data to the Alpha processors.

This did not yield good performance due to PVM. Thus, the YMP was removed as the

host and processor 0 inherited the host's tasks and all �le I/O.

We were left with the choice of using either Cray's explicit shared memory library or

some other message passing library such as FM [11]. We did not want to use FM for

this particular program for two reasons: it uses an active message model which would

require extensive rewriting; and it does not support messages lengths as large as were

required. The CRAY shared memory library provides a fast, but non portable one sided

communications application program interface. In addition, the user must manage all

synchronization between processors and cache coherency. We felt that direct use of the

shared memory library would restrict the portability of our code. Our decision was to

develop a lightweight library, which looks quite similar to CMMD, on top of the explicit

shared memory library. Our timings indicate that our additional layer incurs very little

overhead beyond direct shared memory calls [17].

One improvement the T3D version has over the CM-5 version is in compositing. By

writing our own global reduction operations, we were able to merge the two separate

global reduction operations and intervening comparison into a single operation. The z

depth and RGB color of a pixel can be combined into a single 64 bit integer, with depth

in the most signi�cant 40 bits. This allows a normal 64 bit integer maximum reduction

to accomplish the z bu�er composition.

This new z bu�er reduction uses our Binary Swap compositing scheme which runs in

O(N=2 +N=4 +N=8 + � � �+N=P ) time where N is the number of pixels per processor

and P is the number of processors2 [14]. In the limit as P goes to in�nity, this reduces

to O(N) time. Since the total problem size grows by the product N � P , assuming

a dense image distribution on each processor, an O(N) algorithm on P processors is

optimal.

6 Results

To gauge our algorithm's performance we timed several experiments on various CM-5

partitions and T3D partitions. The test case is a data set consisting of 5 million atoms

and the image size is 1024 x 1024. For comparison we also ran a test case on a Silicon

2This analysis is correct for network topologies such as the hypercube where each path of commu-

nication is a single hop for this particular operation. Other topologies will have greater costs for some

communication paths due to the possibility of link contention. In practice, link contention is rarely an

issue on the T3D because of the speed of the interconnection network.



0.1

1

10

100

32 64 128 256 512

T
im

e 
(s

ec
on

ds
)

Partition Size

CM-5 Rendering Times for 5M Spheres

"cm5.overall"
"cm5.comp"

"cm5.reduce"
"cm5.read"
"cm5.write"

Figure 4: CM-5 Rendering Times

Graphics Inc. Onyx with a RealityEngine2 graphics board to get a sense of how long a

typical high-end graphics workstation would take to complete the task.

The SGI workstation uses a simple, but optimized, program that invokes the SGI

sphere drawing routine. Their sphere drawing routine tessellates a sphere into a set of

triangle or quadrangle meshes (depending on user selected tessellation method). The

number of polygons generated depends upon the user selected tessellation factor. Using

a tessellation factor of 3 and the octahedral tessellation method, the SGI renders our

test data set in 261 seconds, including 5 seconds for reading the data from a local disk.

Using the bit-mapped sphere primitives reduced the run time to 63 seconds. We were

forced to use orthogonal projection with the bit mapped sphere library as noted earlier.

One factor not included in the SGI times is the time it takes to transfer the data

from the SDA to a local disk on the SGI. Over Ethernet it takes several minutes for

a 5 million atom data set. This can be a signi�cant cost that we would incur while

generating a time series animation.

Figure 4 and Table 1 show rendering times for various partition sizes for the CM-5.

Our initial results are quite promising. Total is the time for the program to read in the

data, render, and write out the image. Read is the time to read in the data. Write is

the time to write out the image. Both will vary from run to run due to other jobs using

the SDA. Composite is the time the nodes spent doing compositing. Computation

is the di�erence between the Total less the Read, Write, and Composite. As can be

seen, the algorithm scales reasonably well across all partition sizes. The knee between 64

and 128 processors for the Read time corresponds to there being enough total memory

to read the data set in a single pass. For partition sizes 32 and 64 two reads are required

to process all of the data. The limiting factor for the CM-5 version of the renderer is

the compositing operation.

Figure 5 and Table 2 show rendering times for various partition sizes for the T3D.

Read also includes the time spent moving the data from processor 0 to the other

processors during the read operation. Again, Read and Write will vary due to other

processes and YMP load. The knee between 16 and 32 nodes corresponds to there



Partition Read Write Composite Computation Total

32 4.37 0.15 6.57 66.57 77.66

64 2.99 0.25 6.68 33.45 43.37

128 0.87 0.17 6.54 19.20 26.78

256 0.70 0.28 6.93 11.21 19.12

512 0.75 0.51 7.11 7.34 15.71

Table 1: CM-5 Rendering Times

0.1

1

10

100

4 8 16 32 64 128 256

T
im

e 
(s

ec
on

ds
)

Partition Size

T3D Rendering Times for 5M Spheres

"t3d.overall"
"t3d.read"

"t3d.comp"
"t3d.reduce"

"t3d.write"

Figure 5: T3D Rendering Times

Partition Read Write Composite Computation Total

4 10.71 .37 .61 68.25 79.94

8 9.20 .28 .43 38.25 48.16

16 8.52 .26 .46 20.39 29.63

32 3.87 .34 .47 10.30 14.98

64 4.20 .34 .48 7.28 12.30

128 4.14 .38 .48 4.16 9.17

256 4.61 .32 .43 2.21 7.57

Table 2: T3D Rendering Times



0.1

1

10

100

4 8 16 32 64 128 256 512

T
im

e 
(s

ec
on

ds
)

Partition Size

Rendering Times for 5M Spheres

"cm5.no_load_bal"
"cm5.load_bal"

"t3d.no_load_bal"
"t3d.load_bal"

Figure 6: Computation Times

Partition T3D LB T3D no LB CM-5 LB CM-5 no LB

4 76.96 133.30 NA NA

8 40.66 70.37 NA NA

16 20.95 37.10 NA NA

32 12.48 19.40 45.22 88.57

64 6.92 10.76 25.20 48.13

128 4.12 6.18 17.53 28.06

256 2.27 3.62 10.96 17.04

512 NA NA 7.82 11.63

Table 3: Computation Times

being enough total memory for the entire data set to be processed in one pass. Here

the algorithm exhibits better scaling than the CM-5 version as can be seen with the

compositing and computation times. Although, the limiting factor with the T3D version

is reading and distributing the data.

When comparing the T3D version to the CM-5 version, it is easy to see that the

processors in the T3D are signi�cantly faster. However, the T3D is hindered by not

having parallel disk I/O available to the Alpha processors directly, thus requiring one

processor to perform the read and data distribution.

Computational times with load balancing turned on and turned o� are presented in

Figure 6 and Table 3. Here Computation Time also includes any time spent load

balancing with associated communications. It should be noted that the CM-5 does

not support partition sizes smaller than 32 nodes and that time on the 1024 node

con�guration was not available for these experiments. The numbers di�er from the

previous results due to a di�erent viewpoint which results in roughly 1=3 of the atoms

being clipped. It is easy to see that load balancing is bene�cial for situations in which

it can be applied.



7 Conclusions

We have shown that parallel sphere rendering can be performed at very high rates on

massively parallel supercomputers and that MPPs can be signi�cantly faster than a

graphics workstation. Rendering rates on the three platforms are in the range of: 660K

spheres/second for the T3D, 318K spheres/second for the CM-5, 19K spheres/second

for the SGI using tessellated spheres, and 79K spheres/second for the SGI using bit

mapped spheres. If reading the data was not included in these rates, such as for

an interactive viewer, then the rates would be: 1689K spheres/second for the T3D,

334K spheres/second for the CM-5, 19K spheres/second for the SGI using tessellated

spheres, and 87K spheres/second for the SGI using bit mapped spheres. Our algorithm

makes use of several optimizations to enhance performance: direct sphere rendering,

simpli�ed rendering and lighting equations, trivial but e�cient load balancing, and

optimal compositing.

Our algorithm should be portable to other supercomputers or to workstation clusters

due to its straight forward design. The algorithm only requires basic message passing

primitives for communications, although an optimized global reduction operator can be

of value.

Our algorithm has the advantage of not relying on a hardware speci�c rendering en-

gine. This gives us the capability of integrating it in with other types of renderers, such

as polygonal and volumetric. Writing a renderer that combines our polygon renderer,

sphere renderer, and volume renderer is the focus of our next e�ort. We also plan to

look at additional load balancing techniques that deal with spheres of varying radii.

References

[1] D. M. Beazley, P. S. Lomdahl, N. Gronbech-Jensen, and P. Tamayo. High per-

formance communication and memory caching scheme for molecular dynamics on

the CM-5. In Proceedings of the 8th International Parallel Processing Symposium,

pages 800{809. IEEE Computer Society Press, 1994.

[2] J. Blinn. How to draw a sphere | part 1. IEEE Computer Graphics and Applica-

tions, 15(1):78{83, Jan. 1995.

[3] J. Blinn. How to draw a sphere | part 2. IEEE Computer Graphics and Applica-

tions, 15(1):70{76, Mar. 1995.

[4] J. Blinn. How to draw a sphere | part 3. IEEE Computer Graphics and Applica-

tions, 15(5):87{93, Sept. 1995.

[5] Cray Research Inc. CRAY T3D hardware reference manual, October 1993.

[6] H. Fuchs et al. Fast spheres, shadows, textures, transparencies, and image enhance-

ments in Pixel-Planes. In SIGGRAPH 85 Conference Proceedings, pages 111{120.

Association for Computing Machinery, Inc., July 1985.

[7] H. Fuchs et al. Pixel-Planes 5: A heterogeneous multiprocessor graphics system

using processor-enhanced memories. In SIGGRAPH 89 Conference Proceedings,

pages 79{88. Association for Computing Machinery, Inc., July 1989.



[8] A. Geist et al. PVM3 user's guide and reference manual. Technical Report

ORNL/TM-12187, Oak Ridge National Laboratory, Oak Ridge, TN, 1993.

[9] IEEE Computer Society. 1993 Parallel Rendering Symposium Proceedings. ACM

SIGGRAPH, Oct. 1993.

[10] IEEE Computer Society. 1995 Parallel Rendering Symposium Proceedings. ACM

SIGGRAPH, Oct. 1995.

[11] V. Karamcheti and A. Chien. A comparison of architectural support for the TMC

CM-5 and the Cray T3D. In Proceedings of ISCA'95, 1995.

[12] A. Lastra, July 1996. Private Communication, University of North Carolina,

Chapel Hill.

[13] P. S. Lomdahl, P. Tamayo, N. Gronbech-Jensen, and D. M. Beazley. 50 GFlops

molecular dynamics on the Connection Machine 5. In Proceedings of Supercomput-

ing 93, pages 520{527. IEEE Computer Society Press, 1993.

[14] K. Ma, J. Painter, C. Hansen, and M. Krogh. Parallel volume rendering using

binary-swap compositing. IEEE Computer Graphics and Applications, 14(4):59{

68, July 1994.

[15] B. McCormick, T. DeFanti, and M. Brown. Visualization in scienti�c computing.

Computer Graphics, 21(6), November 1987.

[16] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classi�cation of parallel

rendering. IEEE Computer Graphics and Applications, 14(4):23{32, July 1994.

[17] J. Painter, P. McCormick, M. Krogh, C. Hansen, and G. C. de Verdi�ere. The ACL

message passing library. EPFL Supercomputing Review, 7, November 1995.

[18] J. W. Patterson. Fast spheres. In R. J. Hubbold and R. Juan, editors, Eurographics

'93, pages 61{72, Oxford, UK, 1993. Eurographics, Blackwell Publishers.

[19] T. Porter. Spherical shading. In SIGGRAPH 78 Conference Proceedings, pages

282{285. Association for Computing Machinery, Inc., August 1978.

[20] Silicon Graphics Inc. libsphere. online man page.

[21] J. Staudhammer. On display of space �lling atomic models in real-time. In SIG-

GRAPH 78 Conference Proceedings, pages 167{172. Association for Computing

Machinery, Inc., August 1978.

[22] Thinking Machines Corporation. The Connection Machine CM-5 technical sum-

mary, 1991.

[23] Thinking Machines Corporation. *Render reference manual for Paris, 1991.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Sphere Rendering
	2.2 Parallel Rendering Classi cation
	2.3 Parallel Sphere Rendering

	3 Massively Parallel Processors at the ACL
	3.1 Programming Models

	4 Parallel Sphere Algorithm
	4.1 Load Balancing
	4.2 Scan Conversion
	4.3 Compositing

	5 T3D Issues
	6 Results
	7 Conclusions
	References

